edexcel "

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCSE
In Mathematics A (1MA0)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2014
Publications Code UG039399
All the material in this publication is copyright
© Pearson Education Ltd 2014

NOTES ON MARKI NG PRI NCI PLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

Comprehension and meaning is clear by using correct notation and labelling conventions
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme

```
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```


PAPER: 1MA0_1H					
Question		Working	Answer	Mark	Notes
5			Question given	2	B1 for a suitable question which includes a time frame (the time frame could appear with the response boxes) B1 for at least 3 non-overlapping exhaustive response boxes with no use of inequality symbols
6	(a) (b)		$\begin{aligned} & 2 m^{2}+6 m \\ & 3 x y(y-2) \end{aligned}$	1 2	B1 for $2 m^{2}+6 m$ B2 for $3 x y(y-2)$ (B1 for $3 x\left(y^{2}-2 y\right)$ or $3 y(x y-2 x)$ or $x y(3 y-6)$ or $3 x y$ (a two term algebraic expression))
*7			3	4	M1 for a method to calculate at least one area eg $10 \times 7(=70)$ or 16×10 (=160) M1 for a method to find the total area $(=124)$ M1 (dep on M1) for " 124 " $\div 36$ C1 (dep on M3) for 3 (pigs) clearly identified and supported by correct calculations Or M1 for an area of $36 \mathrm{~m}^{2}$ drawn with dimensions shown M1 for 3 areas of $36 \mathrm{~m}^{2}$ drawn with dimensions shown M1 (dep on M1) for method to find the area left (=16) C1 (dep on M3) for 3 (pigs) clearly identified and supported by correct calculations
8			Correct region	3	B1 for full line drawn 1.5 cm from edge of patio and parallel to it B1 for full arc of circle radius 3 cm centre the centre of the pond B 1 ft for shading region to the right of their vertical line and outside the arc of their circle with correct centre

PAPER: 1MA0_1H					
Question		Working	Answer	Mark	Notes
9	(a)		Shape drawn	2	B2 for shape with vertices at $(0,-1),(-1,-3),(-2,-3),(-2,-1)$ (B1 for rotation of 180° about the wrong centre)
	(b)		Triangle drawn	2	B2 for triangle with vertices at $(6,9),(9,9),(9,3)$ (B1 for 2 vertices correct or enlargement sf 3 in wrong position or enlargement, centre $(0,0)$, but $\mathrm{sf}>1, \neq 3$)
*10		$1.18 \div 4=0.295$ $(118 \div 4=29.5)$ $1.74 \div 6=0.29$ $(174 \div 6=29)$ $1.18 \div 2=0.59$ $1.74 \div 3=0.58$ $1.74 \times 4=6.96$ $\underline{1.18 \times 6=7.08}$ $1.74 \times 2=3.48$ $\underline{1.18 \times 3}=3.54$ $\underline{1.18 \div 2 \times 3=1.77}$ $\underline{1.74 \div 3 \times 2=1.16}$ $4 \div 1.18=3.3(\ldots)$ $\underline{6 \div 1.74=3.4(\ldots)}$	6 pints	3	M1 for division of price by quantity for both bottles or division of quantity by price for both bottles or complete method to find price of same quantity of milk A1 for two correct values that could be used for a comparison C 1 ft (dep on M1) for comparison of their values with a correct conclusion.
11			36	3	M1 for a correct method to find either an interior or an exterior angle; eg. $(180 \times 3) \div 5$ or $540 \div 5(=108)$ or $360 \div 5(=72)$ M1 (dep) for a complete method to find angle CFD. A1 cao

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{PAPER: 1MA0_1H} \\
\hline Qu \& tion \& Working \& Answer \& Mark \& Notes \\
\hline 12 \& \begin{tabular}{l}
*(a) \\
(b)
\end{tabular} \& \& No, temp is \(25^{\circ} \mathrm{C}\)
\[
F=\frac{9 C}{5}+32
\] \& 3

3 \& | M1 for substitution of 77 into the RHS of the formula |
| :--- |
| A1 for 25 cao or for $225 / 9$ and 180/9 cao |
| C1 (dep on M1) for conclusion (ft) following from working shown OR |
| M1 for substitution of 20 into LHS of formula and correct process to find F |
| A1 for 68 cao |
| C1 (dep on M1) for conclusion (ft) following from working shown |
| M1 for expansion of the brackets (eg $5 \times F-5 \times 32$) or an attempt to multiply both sides by 9 , or divide both sides by 5 as the first step. |
| M1 (dep) for a correct second step |
| A 1 for $F=\frac{9 C}{5}+32$ oe |

\hline *13 \& \& \& Answer in range

\[
35-50

\] \& 4 \& | M1 for a method to either find the exact or approximate number of seconds in one day, e.g. $24 \times 60 \times 60(=86400)$ or the number of minutes in 2014 seconds, e.g. $2014 \div 60$ or $2000 \div 60(\approx 30)$ |
| :--- |
| M1 for a correct method to find the number of prizes; eg. ' $24 \times 60 \times 60$ ' $\div 2014$ oe or $60 \div 30 " \times 24$ oe |
| B1 for rounding at least one appropriate value in the working to 1 sf , e.g. 24 rounded to 20 or 2014 rounded to 2000 or 86400 rounded to 90000 C1 (dep on M2) for answer in $35-50$ clearly identified |

\hline 14 \& \& \& 6 hours \& 4 \& ```
B1 for 5 miles $=8 \mathrm{~km}$ or equivalent statement or for $\frac{8}{5}$ or $\frac{5}{8}$ used
correctly
M1 for $50 \times r$ with $1.5 \leq r \leq 1.7$ oe or $480 \times s$ with $0.6 \leq s \leq 0.7$ oe
M1 for $480 \div$ speed or distance $\div 50$
A1 oe

``` \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{PAPER: 1MA0_1H} \\
\hline \multicolumn{2}{|l|}{Question} & Working & Answer & Mark & Notes \\
\hline 17 & (a) & & 1 & 1 & B1 cao \\
\hline & (b) & & \[
\frac{1}{100}
\] & 1 & \[
\text { B1 for } \frac{1}{100} \text { or } 0.01
\] \\
\hline & (c) & & \[
\begin{gathered}
0.00273 \\
27.3 \times 10^{-3} \\
2.73 \times 10^{3} \\
273 \times 10^{2}
\end{gathered}
\] & 2 & \begin{tabular}{l}
M1 for converting all numbers to same form with at least one conversion correct \\
A1 for fully correct order with correct numbers in any correct form (SC B1 if one number incorrectly placed or all 4 numbers listed in reverse order)
\end{tabular} \\
\hline 18 & & & \[
\begin{gathered}
x=7 \\
y=-3
\end{gathered}
\] & 3 & \begin{tabular}{l}
M1 for correct process to eliminate one variable (condone one arithmetic error) \\
M1 (dep) for substituting found value in one of the equations or appropriate method after starting again (condone one arithmetic error) A1 for \(x=7\) and \(y=-3\)
\end{tabular} \\
\hline 19 & & & \(y=\frac{1}{2} x-5\) & 3 & \begin{tabular}{l}
M1 for method to find gradient of \(L_{1}\) e.g \(\frac{6-3}{6-0}\left(=\frac{1}{2}\right)\) M1 for \(y=" \frac{1}{2} " x+c\) or \(y=m x-5 \quad(c, m\) do not have to be numerical, or correct numerical values) or for \((L=) \frac{1}{2} x-5\) \\
A1 \(y=\frac{1}{2} x-5\) oe
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{PAPER: 1MA0_1H} \\
\hline \multicolumn{2}{|l|}{Question} & Working & Answer & Mark & Notes \\
\hline 20 & & & 6 & 3 & \begin{tabular}{l}
M1 for \(\frac{15}{10}(=1.5)\) or \(\frac{10}{15}(=0.66 .\).\() or \frac{16}{10}(=1.6)\) or \(\frac{10}{16}(=0.625)\) \\
M1 for \(\frac{15}{10} \times 16(=24)\) oe \\
A1 cao \\
OR \\
M1 for \(\frac{15}{16}(=0.9375)\) or \(\frac{16}{15}(=1.066 \ldots)\) or \(\frac{16}{10}(=1.6)\) or \(\frac{10}{16}(=0.625)\) \\
M1 for \(\frac{15}{16} \times 10(=9.375)\) oe \\
A1 20.625 oe
\end{tabular} \\
\hline 21 & & & 55 & 3 & \begin{tabular}{l}
M1 for angle \(\mathrm{ABO}=90\) or angle \(\mathrm{ADO}=90\), or angle \(\mathrm{OBC}=15\) or angle \(\mathrm{FDO}=90\) or angle \(\mathrm{EBO}=90\) (could be marked on the diagram) \\
M1 for reflex angle BOD \(=360-(360-90-90-40)(=220)\) \\
or angle \(\mathrm{BCD}=(360-90-90-40) \div 2(=70)\) \\
or angle BDO or angle DBO =90-(180-40)/2 (=20) \\
or angle BOC = \(180-(15+15)(=150)\) \\
A1 cao
\end{tabular} \\
\hline 22 & \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & & \[
27 x^{6} y^{12}
\]
\[
\frac{x-3}{2 x-1}
\] & \[
2
\]
\[
3
\] & \begin{tabular}{l}
B2 cao \\
(B1 for any two terms correct in a product, e.g. \(9 x^{6} y^{12}\) ) \\
M1 for \((x-3)(x+3)\) \\
M1 for \((2 x-1)(x+3)\) \\
A1 for \(\frac{x-3}{2 x-1}\) cao
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{PAPER: 1MA0_1H} \\
\hline \multicolumn{2}{|l|}{Question} & Working & Answer & Mark & Notes \\
\hline 23 & \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & & \[
\frac{3}{10}, \frac{6}{9}, \frac{3}{9}, \frac{7}{9}, \frac{2}{9}
\]
\[
\frac{48}{90}
\] & 2
3 & \begin{tabular}{l}
B1 for \(\frac{3}{10}\) on LH yellow branch \\
B1 for \(\frac{6}{9}, \frac{3}{9}, \frac{7}{9}, \frac{2}{9}\) correct on tree diagram \\
M1 for \(\frac{7}{10} \times 4 \frac{3}{9}\) " or " \(\frac{3}{10} " \times " \frac{7}{9}\) "or " \(\frac{3}{10} " \times " \frac{2}{9}\) " \\
M1 for \(\frac{7}{10} \times " \frac{3}{9} "+" \frac{3}{10} " \times " \frac{7}{9} "+" \frac{3}{10} " \times " \frac{2}{9} "\) \\
A1 for \(\frac{48}{90}\) oe \\
OR \\
M1 for \(\frac{7}{10} \times " \frac{6}{9}\) " \\
M1 for \(1-\frac{7}{10} \times{ }^{\prime \prime} \frac{6}{9}\) " \\
A1 for \(\frac{48}{90}\) oe
\end{tabular} \\
\hline
\end{tabular}



\section*{Modifications to the mark scheme for Modified Large Print (MLP) papers.}

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: \(\pm 5\) 응
Measurements of length: \(\pm 5 \mathrm{~mm}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PAPER: 1MA0_1H} \\
\hline \multicolumn{2}{|l|}{Question} & Modification & Notes \\
\hline Q08 & & Diagram made x 2 size. 3 metres changed to 6 metres. 6 metres changed to 12 metres. & B1 for full line drawn 3 cm from edge of patio and parallel to it B1 for full arc of circle radius 6 cm centre the centre of the pond B1 ft for shading region to the right of their vertical line and outside the arc of their circle with correct centre \\
\hline Q09 & \begin{tabular}{l}
(a) \\
(b)
\end{tabular} & \begin{tabular}{l}
2 cm grid. A cut-out shape is provided. \\
Axis removed. 2 cm plain grid. L shape put on grid. 3 squares down and an extra square across. Total 4 squares. Candidates asked to enlarge the shape by SF3
\end{tabular} & \begin{tabular}{l}
B2 for shape with vertices at \((0,-1),(-1,-3),(-2,-3),(-2,-1)\) \\
(B1 for rotation of \(180^{\circ}\) about the wrong centre) \\
B 2 for a correct enlargement \\
( B 1 for an enlargement with a SF other than 3 or for 3 sides correct)
\end{tabular} \\
\hline Q10 & & No pictures & \begin{tabular}{l}
M1 for division of price by quantity for both bottles or division of quantity by price for both bottles or complete method to find price of same quantity of milk \\
A1 for two correct values that could be used for a comparison C 1 ft (dep on M1) for comparison of their values with a correct conclusion.
\end{tabular} \\
\hline
\end{tabular}

\section*{PAPER: 1MA0_1H}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Question } & \multicolumn{1}{|c|}{ Modification } & \multicolumn{1}{c|}{ Notes } \\
\hline Q14 & & No picture, just a box giving the distances & \begin{tabular}{l} 
B1 for 5 miles \(=8 \mathrm{~km}\) or equivalent statement or for \(\frac{8}{5}\) or \(\frac{5}{8}\) used correctly \\
M1 for \(50 \times r\) with \(1.5 \leq r \leq 1.7\) oe or \(480 \times s\) with \(0.6 \leq s \leq 0.7\) oe \\
M1 for \(480 \div\) speed or distance \(\div 50\) \\
A1 oe
\end{tabular} \\
\hline Q15 & & Grid \(\times 2-2 \mathrm{~cm}\) squares. Top row removed. & \begin{tabular}{l} 
B2 for all correct \\
(B1 for 2 or 3 correct \()\) \\
M1 (dep on at least B1) for at least 6 points from their table plotted \\
correctly \\
A1 cao for fully correct graph \\
M1 for line \(y=x+3\) drawn correctly or for reduction to correct 3 term \\
quadratic \((=0)\) and : \\
\((x \pm 1)(x \pm 4)\) \\
or formula using \(a=1, b=-3\) and \(c=-4, ~ a l l o w ~ o n e ~ s i g n ~ e r r o r ~ i n ~ t h e ~\) \\
formula, \\
or \(\left(x-\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}\) \\
A1 cao
\end{tabular} \\
\hline
\end{tabular}

\section*{PAPER: 1MA0_1H}
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{2}{|c|}{ Question } & \multicolumn{1}{|c|}{ Modification } & \multicolumn{1}{c|}{ Notes } \\
\hline Q16 & (a) & \begin{tabular}{l} 
Box plots: "first half" - relevant figures are 4.25, 4.75, 5.25, \\
\(5.5,6.4\).
\end{tabular} & \begin{tabular}{l} 
M1 for "5.5" - "4.75" with at least one value correct \\
A1 cao \\
"Second half" figures are \\
\(3.6,4.25,4.75,5\), and 6.2 cm squares
\end{tabular} \\
\hline Q19 & & 2 cm grid & \begin{tabular}{l} 
B1 from (a) for a correct comparison of a measure of spread \\
B1 for a correct comparison of medians (accept averages) \\
For the award of both marks at least one of the comparisons made must be \\
in the context of the question.
\end{tabular} \\
\hline
\end{tabular}

\section*{PAPER: 1MA0_1H}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} & Modification & Notes \\
\hline Q20 & & Picture removed - box with the word "Photo inserted" Diagram labelled Diagram (i) and (ii) & \begin{tabular}{l}
M1 for \(\frac{15}{10}(=1.5)\) or \(\frac{10}{15}(=0.66 .\).\() or \frac{16}{10}(=1.6)\) or \(\frac{10}{16}(=0.625)\) M1 for \(\frac{15}{10} \times 16(=24)\) oe \\
A1 cao \\
OR \\
M1 for \(\frac{15}{16}(=0.9375)\) or \(\frac{16}{15}(=1.066 \ldots)\) or \(\frac{16}{10}(=1.6)\) or \(\frac{10}{16}(=0.625)\) \\
M1 for \(\frac{15}{16} \times 10(=9.375)\) oe \\
A1 20.625 oe
\end{tabular} \\
\hline Q22 & (b) & MLP only : x changed to y & M1 for \((y-3)(y+3)\) M1 for \((2 y-1)(y+3)\) A1 for \(\frac{y-3}{2 y-1}\) cao \\
\hline Q25 & & \begin{tabular}{l}
x 2 size, solid answer lines \\
Braille only - Roman numerals inserted on the five answer lines
\end{tabular} & Standard mark scheme \\
\hline
\end{tabular}```

